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Abstract
Given a spectral triple, a noncommutative distance between states

can be defined. Even for “compact” noncommutative spaces, infinite
distances between states can arise. We first study this phenomenon
in a general setting and then specialise to certain spectral triples over
C(M)⊗Mn(C). The “bounded components” induce a partition of the
space of states, which we describe in our particular case.

In his article [6], Connes defines the notion of spectral triple, a non-
commutative version of spin manifolds. A spectral triple is made up of an
involutive algebra A acting faithfully on a Hilbert space H , together with
an unbounded self-adjoint operator D on H . We denote by ‖ ‖ the norm on
A induced by its representation on H . The triple A ,H and D must fulfill
certain conditions to form a spectral triple. In particular, the commutator
[D, a] must be bounded for any a ∈ A . The algebra A can be commutative
or not, hence the name “noncommutative geometry”.

In the commutative case, the conditions imply that A = C∞(M), D is
the Dirac operator on the spin manifold M and H is the set of L2 spinors
onM (see [7]). In the following, we will use a “simplified” version of spectral
triples, and we will only use the conditions (see section 2 of [7]):

• D is an unbounded self-adjoint operator.

• A = {T ∈ A : T and [D,T ] ∈
⋂
m>0 Dom δm} where A is a von Neu-

mann algebra represented on H , δ(T ) = [|D|, T ] and Dom δ is the set
of all operators T such that T (Dom |D|) ⊆ Dom |D| and δ(T ) extends
to a bounded linear map on H .

One can prove (see [8], lemma 2.1) that A is an involutive algebra. We call
A = A the closure in B(H ) of A in the operator norm. This ensures that
the bounded positive linear forms σ on A which satisfy σ(1) = 1 extend to
states of the C∗-algebra A. We will call these forms the states of A .

On a spectral triple, there are no “points”, they are replaced by the
(pure) states of A . Indeed, a consequence of the Gelfand-Naimark theorem
is that the pure states of C∞(M) equipped with the sup-norm are the points
of M .

Using D, a distance between states of A can be defined by the formula:

d(σ, σ′) = sup{|σ(a)− σ′(a)|,
∥∥[D, a]

∥∥ 6 1},

where we use the norm in B(H ). There are two natural topologies on the
space of states: the metric topology, defined on states using the distance d,
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and the weak ∗-topology arising from the evaluation of states on elements of
A . The relations between these two topologies were investigated in [13, 15,
16].

In a more physical context, distances were explicitly computed for finite-
dimensional noncommutative algebras [9], Moyal spaces [3, 4] and almost
commutative geometries [10, 12]. In this latter case, the results were related
to Carnot-Carathéodory distance [11].

The distance d has the surprising property that even in a “compact”
spectral triple, i.e. if A is unital, some states verify d(σ, σ′) = ∞. Even
though this property has been known for a long time (see [6]), there seems to
be no systematic treatment of this phenomenon. The goal of this article is
to start such a study. Given a state σ, we can define the bounded component
[σ]b of this state as:

[σ]b = {σ′ : d(σ, σ′) <∞}.

The underlying idea is that bounded components should induce a singular
foliation of the space of pure states, which could in turn be analysed using,
for instance, the results of [1]. While this result is still far off, the present
paper provides a first step in this direction.

To analyse bounded components [σ]b, we introduce the notion of classes
of restriction [σ]r and connected components [σ]c of the space of states. In
a first section, we establish a hierarchy of the three notions and prove that
the inclusions can be strict. We moreover give a necessary and sufficient
condition under which restriction classes coincide with bounded components.
The last two sections of the paper are devoted to the study of matrix-valued
smooth functions over a manifold. We prove that for a certain class of
spectral triples over this algebra,

[σ]c = [σ]b = [σ]r.

We conclude this paper by giving an explicit description of bounded com-
ponents for this class of spectral triples.

In the following, we will always assume that A is unital.

1 Partitions of States

1.1 Definition and First Properties

Given a spectral triple (A ,H , D), we call Comm(D) the set {a ∈ A :
[D, a] = 0}. Notice that Comm(D) is a unital subalgebra of A and therefore
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the restriction of a state of σ to Comm(D) is a state. We introduce 3 sets
of states of A :

Definition 1.1 (restriction class). Given a state σ, we define its restriction
class [σ]r as:

[σ]r = {σ′ : σ′|Comm(D) = σ|Comm(D)}.

Definition 1.2 (bounded component). Given a state σ, we define its bounded
component [σ]b as:

[σ]b = {σ′ : d(σ, σ′) <∞}.

The connected component [σ]c of a state σ, in the sense of the metric
topology, has an obvious meaning.

Proposition 1.3. For any state σ of A we have the following inclusions:

[σ]c ⊆ [σ]b ⊆ [σ]r. (1)

Proof. Let us first show that [σ]b ⊆ [σ]r by showing that if σ|Comm(D) 6=
σ′|Comm(D) then d(σ, σ′) = ∞: if we can find a0 ∈ Comm(D) such that
σ(a0) − σ′(a0) = ε 6= 0, then for any λ ∈ R ‖[D,λa0]‖ 6 1 and |σ(λa0) −
σ′(λa0)| = |λε| → ∞.

The connected component of a state is included in the bounded com-
ponent. Indeed, if d(σ0, σ

′
0) = ∞, then Uσ0 = {σ : d(σ0, σ) < ∞} and

Uσ′
0

= {σ′ : d(σ′0, σ′) < ∞} are two open sets in the sense of the metric
topology. Since d(σ0, σ

′
0) = ∞, Uσ0 ∩ Uσ′

0
= ∅ and this shows that σ0 and

σ′0 are not in the same connected component.

For most algebra A , the set S (A ) of all states of A is much too large
to be studied. We therefore restrict our attention to the set P(A ) of pure
states, i.e. the extreme points of S (A ) – see [2], p.105. Henceforth we
consider σ a pure state and [σ]r, [σ]b, [σ]c as subsets of P(A ).

In general, the inclusions of (1) are strict. To prove that [σ]c ( [σ]b can
happen, it suffices to consider the algebra A = C ⊕C acting naturally on

H = C⊕C, endowed with the dirac operator D =
(

0 m
m 0

)
. This algebra

has only two pure states:

σ(x⊕ y) = x σ′(x⊕ y) = y.
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It is readily checked that the distance d(σ, σ′) = 1
|m| . This proves that both

states belong to the same bounded component. However, they do not belong
to the same connected component.

The example of [σ]b ( [σ]r is more involved. The first example of such
phenomenon was given in [3], section 3. For the convenience of the reader,
we give a summary of this article.

A spectral triple is defined by taking A = K̃, the unitalisation of the
compact operators K acting diagonally on H = l2(N)⊕ l2(N). We denote
by (en) a basis of H0 = l2(N) and by (fm,n) the associated matrix units. To
define a Dirac operator D on H , we first introduce the unbounded operator
∂0, whose domain are the finite sums of (en), and whose definition comes
from ∂0em = −

√
m+ 1 em+1. It is easy to check that if x, y are finite sums

of (en), then
〈∂0y, x〉 = 〈y, ∂x〉,

where ∂em =
√
mem−1 and ∂e0 = 0. This shows that the domain of the

adjoint ∂∗0 of ∂0 contains the finite sums. Consequently, ∂∗0 is densely defined
and ∂0 is closable (see [14], theorem 5.1.5). Letting ∂ = ∂∗0 and ∂ = ∂∗∗0 we
obtain a self-adjoint operator D by the formula

D =
(

0 ∂
∂ 0

)
.

With these definitions, we see that finite rank operators send DomD
to itself. Therefore, the finite rank operators belong to A defined in the
introduction.

Since A has a canonical representation on H0, we can define pure states
on A using a unit vector ψ ∈ H0: it suffices to set σψ(a) = 〈ψ, aψ〉. In
particular, if we take

ψ = 1√
K

∑
p

1
(p+ 1)3/4 ep,

where K =
∑
p

1
(p+1)3/2 , we can define two pure states by σ0(a) = 〈e0, ae0〉

and σ(a) = 〈ψ, aψ〉.
The article [3] proves that the distance d(σ0, σ) = ∞ (see proposition

3.10) by considering the sequence:

a(m) = 1√
2

m∑
p=0

m∑
k=p

1√
k + 1

fp,p.

5



Notice that a(m) ∈ A since the sum is finite for any fixed m. Direct com-
putations prove that ‖[D, a(m)]‖ 6 1 and

∣∣∣σ0(a(m))− σψ(a(m))
∣∣∣ =

∣∣∣∣∣∣ 1√
2

m∑
k=0

1√
k + 1

− 1√
2K

m∑
p=0

1
(p+ 1)3/2

m∑
k=p

1√
k + 1

∣∣∣∣∣∣
One can prove (see [4], proposition 6) that this sum diverges, and therefore
d(σ0, σψ) = ∞. However, using the formulas given in the proposition 5 of
[4], it is not difficult to check that Comm(D) = C1. Hence, σ0 and σψ
belong to the same restriction class, yet they are not in the same bounded
component.

1.2 Necessary and Sufficient Condition of Equality

Following the reasoning of [15], we now find a necessary and sufficient con-
dition for [σ]c = [σ]b. We will do this in two parts. We start with

Lemma 1.4. If there is a constant C > 0 such that :

‖a‖∼ 6 C‖[D, a]‖

where ‖ ‖∼ is a (semi-)norm on the quotient space A /Comm(D) defined by

‖a‖∼ = inf
a0∈Comm(D)

‖a+ a0‖,

then two states belong to the same bounded component if and only if they
have the same restriction to Comm(D). Moreover, the diameter of any
bounded component [σ] is bounded by 2C.

Remark 1.5. In general, A is not a Banach space, e.g. A = C∞(M).
However, it is natural to ask when ‖ ‖∼ is actually a norm. Proposition 1.9
provides a sufficient condition for this property.voir si on ne peut pas faire
mieux (Reed & Simon I, p.268)

Proof. Let σ1, σ2 be two states of A such that (σ1 − σ2)|Comm(D) = 0. For
any a ∈ A ,

|(σ1 − σ2)(a)| = |(σ1 − σ2)(a+ a0)| 6 2‖a+ a0‖

where a0 ∈ Comm(D). Taking the infimum over a0, we prove that σ1 − σ2

is continuous for ‖ ‖∼. Using the inequality of the hypothesis, we get:

|(σ1 − σ2)(a)| 6 2C‖[D, a]‖

which shows that d(σ1, σ2) 6 2C.
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The above lemma has a converse:

Lemma 1.6. Assume that:

(i) Comm(D) is norm-closed and possess a norm-closed complement in
A;

(ii) d(σ1, σ2) = ∞ ⇐⇒ ∃a0 ∈ Comm(D) : (σ1 − σ2)(a0) 6= 0, i.e. [σ]b =
[σ]r;

(iii) all bounded components have a diameter that is less than C0 > 0.

We have the following inequality:

‖a‖∼ 6 kC0‖[D, a]‖ (2)

where ‖ ‖∼ is the norm of the quotient space A/Comm(D) and k is a con-
stant.

Remark 1.7. Notice that as soon as Comm(D) is finite dimensional, it is
complemented.

Proof. Consider the elements a ∈ A as functions on the space of states
S (A ), and denote by ‖ ‖∞ the sup-norm of these functions. According to
[15] p.219, we can find a constant k′ > 0 such that:

‖a‖ 6 k‖a‖∞.

The assumption (i) together with the discussion of [5] p.19 ensures that we
can find a complement M of Comm(D) in A such that the quotient map
is an isomorphism. The definition of ‖ ‖∼ entails that for any a0 ∈ M ,
‖[a0]‖∼ 6 ‖a0‖. Hence, it suffices to consider a0 ∈M to get (2).

Let a0 ∈M , just like [15] p.219, we can find a state µ such that ‖a0‖ 6
k|µ(a0)|. Moreover, using the Hahn-Banach theorem, we can define a linear
form ν on A which satisfies ν|Comm(D) = µ|Comm(D), ν(a0) = 0 and ‖ν‖ = 1.

It is now clear that for such a ν, ν(1) = 1, and by [2] II.6.2.5, ν is
therefore positive.

The assumption (ii) shows that µ and ν belong to the same bounded
component. The final assumption now entails

‖a0‖ 6 k|µ(a0)| = k|µ(a)− ν(a)| 6 kC0‖[D, a0]‖,

and such an inequality holds for any a0 ∈M .
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Restriction classes are useful because theorem 1.8 of [15] applies to them,
defining their topology:

Proposition 1.8. Let L1 = {a ∈ A : ‖[D, a]‖ 6 1}. If the image of L1 in
the quotient A/Comm(D) is totally bounded for ‖ ‖∼, then the metric and
weak-∗-topologies agree on the restriction classes.

Proof. This is just a restatement of the theorem 1.8 of [15]. It applies when
we take (in [15], p.217) A = A, L = A , L(T ) = ‖[D,T ]‖, K = Comm(D)
and η to be a (pure) state of Comm(D). Then the S of [15] is just the
restriction class associated to η.

Notice that if L1 is totally bounded, then it is bounded i.e. there is a
constant C such that if ‖[D, a]‖ 6 1, we can find a a0 ∈ Comm(D) such
that ‖a + a0‖ 6 C. Thus ‖a‖∼ 6 C‖[D, a]‖ and the hypothesis of lemma
1.4 is fulfilled.

1.3 Study of Comm(D) and Extremal Restriction Classes

We now describe Comm(D) when A is described as regular part, D is self-
adjoint and has compact resolvent:

Proposition 1.9. If the algebra A is defined by

A =
{
T ∈ A

∣∣∣∣∣T, [D,T ] ∈
⋂
m>0

Dom δm
}
,

where A is a von Neumann algebra, δ(T ) = [|D|, T ] and D is a selfadjoint
operator with compact resolvent, then Comm(D) is a (possibly infinite) sum
of finite matrices. In particular, it is norm-closed.

Proof. Since D is a selfadjoint operator with compact resolvent, we can find
a sequence of finite dimensional pairwise orthogonal eigenspaces Eλ ⊆ H
indexed by the eigenvalues λ such that

H =
⊕

Eλ.

An operator T ∈ B(H ) commutes with D if and only if T (Eλ) ⊆ Eλ. In
otherwords, D′ =

⊕
B(Eλ) and since Eλ has finite dimension, B(Eλ) is just

a matrix algebra.
Now, we want to take the intersection of the algebra D′ with the algebra

A. The intersection is a sub-von Neumann algebra. The result follows from
lemma 1.10.
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Lemma 1.10. Any sub-von Neumann algebra M of A =
⊕∞

k=0Mnk(C),
where for all k nk <∞, is a sum finite dimensional type I factors.

Proof. The condition on A actually means that there are normal morphisms
φk : A → Ak = Mnk(C) such that

⊕∞
k=0 φk : A →

⊕∞
k=0 Ak is an isomor-

phism.
In the particular case of D′, these morphisms are in fact φk(a) = pka =

a|Eλk
, where pk is a central projector of A.

Now set R0 = M and define recursively Rl+1 = kerφl ∩Rl. Since φk is
normal, for any l

Rl = φl(Rl)⊕Rl+1.

Consequently,

M =
∞⊕
l=0

φl(Rl)⊕
∞⋂
k=0

Rk.

The definition of Rl entails Rl+1 ⊆
⋂l
k=0 kerφk. The hypothesis on

⊕∞
k=0 φk

implies that
⋂∞
k=0 kerφk = {0} and thus

M =
∞⊕
l=0

φl(Rl).

Since φl(Rl) ⊆ φl(M) ⊆ Mnk(C), this decomposition of M is an injection
M ↪→

⊕∞
k=0Mmk(C). The property Rl+1 ⊆

⋂l
k=0 kerφk ensures that this

map is actually a surjection.

An immediate corollary of the proposition 1.9 is the following

Corollary 1.11. A state σ of Comm(D) is pure if and only if there is a
minimal projection p ∈ Comm(D) such that

σ(a) = pap ∈ pComm(D)p ' C. (3)

The isomorphism pComm(D)p ' C is actually a caracterisation of the
minimal projection p. Given a minimal projection p in Comm(D), we call
σp the pure state defined by the formula (3).

Elaborating on the previous corollary, we can define the extremal restric-
tion classes as the restriction classes coming from pure states of Comm(D).
These classes have a simple description:

Proposition 1.12. Let [σ]r be the extremal restriction class associated to
the pure state σp. This restriction class is homeomorphic, in the weak-∗-
topology sense, to the pure states S (pA p) of pA p.
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Proof. The expression of σp provides us with σp(1 − p) = 0. If we take a
state σ of A in the restriction class of σp, we therefore get σ(1 − p) = 0.
Any element a ∈ A can be writtten as

a = a(1− p) + (1− p)ap+ pap.

The Cauchy-Schwarz inequality ensures that σ
(
a(1−p)

)
= 0 = σ

(
(1−p)ap

)
,

which implies σ(a) = σ(pap).
Thus, any σ in the restriction class of σp defines a state σ on pA p and

conversely if we start with a state σ of pA p, we can define a state σ on A
by

σ(a) = σ(pap).
Notice that it follows from the explicit expressions that the operations σ  σ
and σ  σ are continuous in the sense of weak-∗-topology.

Finally, we use the characterisation of pure states as extremal states. In
particular, if σ = tσ1 +(1−t)σ2 where t ∈ (0, 1) and σi are states of A , then
σp = tσ1|Comm(D) + (1 − t)σ2|Comm(D) and since σp is pure, σ1|Comm(D) =
σ2|Comm(D) = σp. Hence, σ is pure if and only if σ(p • p) ∈ S (pA p) is
pure.

2 Scalar Perturbation Type Spectral Triple

2.1 Definition

Let M be a compact, connected spin manifold without boundaries. Let DE

be its canonical Dirac operator acting on the Hilbert space H0 of square in-
tegrable spinors. The scalar perturbation type spectral triples are the spectral
triples (C∞(M)⊗Mn(C),H0⊗Mn(C), D) where D is a scalar perturbation
type Dirac operator, i.e. it satisfies

[D, a] = [DE ⊗ Id, a] + [(ΓE ⊗ Id)H, a],

for some smooth self-adjoint matrix-valued function H on M .
For this class of spectral triples, we will fully describe the bounded com-

ponents and the set of all bounded components. Our description will depend
on:

Theorem. Given a spectral triple (C∞(M)⊗Mn(C),H , D) of scalar per-
turbation type, we can find C > 0 and A1 such that A1 ⊕ Comm(D) = A
and:

∀a ∈ A1, ‖a‖ 6 C
∥∥∥[D, a]

∥∥∥,
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where we used the notation Comm(D) for {a ∈ A : [D, a] = 0}. To
establish our theorem, we need to distinguish according to the dimension
N of the manifold M . In a first part, we will show a preliminary result for
N = 1, then show the same result for N > 1, before we can merge both
cases into the theorem.

2.2 Elementary Cases

Let us first do some observations on the triple (A ,H , D) with A = C∞(M)⊗
Mn(C), H = H0⊗Mn(C), D = DE⊗ IdMn(C). In this context, the smooth
functions on M are seen as sections of the Clifford bundle Cl(M) over M .
The sections of this bundle act on H0. Therefore, if f ∈ C∞, we can consider
[DE , f ] as a commutator in B(H0).

It is well known (see [17], proposition 9.11, p.387) that [DE , f ] = −idf ,
where df is seen as a section of the Clifford bundle Cl(M) acting on H0.
It is obvious in this case that Comm(DE ⊗ Id) is reduced to the subspace
1⊗Mn(C) ⊆H0⊗Mn(C). If we choose a point x0 ∈M , the set A1 = {a ∈
A : a(x0) = 0} is a complement of Comm(DE ⊗ Id) in A .

For any Riemannian manifold M0 and any two points x, y ∈M0, we will
use the notation d0(x, y) for the inferior bound of the length of smooth paths
going from x to y. If a is the matrix (aij), we will refer to the matrix (daij)
as da. We are now ready to prove the following lemma :

Lemma 2.1. Let M0 be a bounded connected Riemannian manifold and
x0 ∈ M0. Let C0 = supx∈M0{d(x, x0)}. For any a ∈ C∞(M0) ⊗Mn(C)
satisfying a(x0) = 0 we have:

‖a‖ 6 C0
∥∥∥da∥∥∥.

Remark 2.2. In the case of a spin manifold, we have ‖da‖ =
∥∥[DE⊗ Id, a]

∥∥
and the functions that vanish at x0 are a complement of Comm(D) = 1 ⊗
Mn(C), thus the theorem is proved.

Proof. Let x be a point of M0. According to the definition of C0, for any
ε > 0, we can find a smooth path from x0 to x, with length less than C0 +ε.
If c(t) is such a path, we have:

a(x) = a(x)− a(x0) =
∫ 1

t=0
da(c(t)).c′(t)

We see that the right-hand side is bounded by (C0 + ε) supu∈M ‖da(u)‖.
Taking ε to 0, we get the estimation of the lemma.
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2.3 The case of S1

We now establish our result in the simple case of N = 1. The only compact
connected boundaryless manifold of dimension 1 is the circle S1. In this
case, the Dirac operator DE = −i ddθ , and there is no difference between a
scalar perturbation and a general perturbation of the Dirac operator.

Lemma 2.3. For any perturbation D of the Dirac operator DE⊗IdMn(C) on
S1 = R/(2πZ), if we set A0 = {a ∈ A : a(π) = 0} then Comm(D) ∩A0 =
{0} and for any a ∈ A0, the following holds:

‖a‖ 6 π
∥∥[D, a]

∥∥,
where the norm is that of B(H ).

Proof. The commutator is −ia′(θ) + [H, a](θ). We can find the primitive K
of H on [0, 2π] with K(0) = Id and then write :

[D, a](θ) =
(
e−iK

[
−i d
dθ
⊗ Id, eiKae−iK

]
eiK

)
(θ)

for any θ ∈ [0, 2π]. K being self-adjoint, eiK is unitary. Clearly, [D, a] = 0
implies eiKae−iK = L0 where L0 ∈ 1⊗Mn(C), that is a = e−iKL0e

iK . It is
now obvious that Comm(D) ∩A0 = {0}.

Let us now prove the estimate. eiK being unitary,

‖[D, a]‖ =
∥∥∥∥[−i ddθ ⊗ Id, eiKae−iK

]∥∥∥∥ .
Now, if we take x0 = π and a(x0) = 0, we have

(
eiKae−iK

)
(π) = 0, and we

can use the lemma 2.1 with C0 = π:

‖a‖ = ‖eiKae−iK‖ 6 C0‖[DE ⊗ Id, eiKae−iK ]‖ = π‖[D, a]‖.

2.4 Generic Case

We will now treat the generic case.
The spectral triple over the manifold M can either be odd or even, ac-

cording to the parity of N , the dimension of M . In the even case, a self-
adjoint unitary operator ΓE on H0 is available. It commutes with A and
anti-commutes with DE .

In the odd case, this operator ΓE is not available, so we will let ΓE = Id
in this case.
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Lemma 2.4. If N > 1, we can find a constant C2 such that for any a ∈ A :∥∥[DE ⊗ Id, a]
∥∥ 6 C2

∥∥[D, a]
∥∥

Remark 2.5. In particular, if a ∈ Comm(D), then
∥∥[DE ⊗ Id, a]

∥∥ = 0 and
a ∈ 1⊗Mn(C).

Proof. We shall distinguish two cases, according to the parity of N . These
cases will not require the same arguments. However, in both cases we will
exhibit a continuous Banach space projection P such that

P ([D, a]) = [DE ⊗ Id, a].

In the even case, we can consider an involution on B(H ) defined by S(T ) =
(ΓE ⊗ Id)T (ΓE ⊗ Id). This involution is clearly continuous, thus the associ-
ated projections 1

2(IdB(H )±S) are continuous.
Now, mind that for all f ∈ C∞(M), ΓEf = fΓE and that DEΓE =

−ΓEDE , hence if we take [D, a] = [DE⊗ Id, a]+ [(ΓE⊗ Id)H, a], we see that

1
2(IdB(H )−S)([D, a]) = [DE ⊗ Id, a]

and the proposition is proved.

In the odd case, by decomposing a according to the canonical basis (eij)
of Mn(C), we can reduce the problem to C∞(M). Taking the notations of
[17], p.373, [DE , f ] + f ′ acts as −ic(dfγ) + c(f ′) where c is the faithful rep-
resentation of Cl+(M) on the spinors and γ is the chirality element defined
p.371. We have ([17], p.370) Cl+(M) '

⊕
k Λ2kT ∗M (as a vector bundle)

and we can split Cl+(M) into S '
⊕
n>0 Λ2nT ∗M and T ' Λ0T ∗M , the

trivial complex bundle. We want to use this splitting Cl+(M) = S ⊕ T to
justify our projection.

It is clear that f ′ is a section of T , therefore we just have to check that
dfγ is a section of S. We will simply check that for any x ∈M , df(x) is an
element of the fiber Sx.

If df(x) = 0, it is obvious. Therefore, we must take x ∈ M such that
df(x) 6= 0. On a small enough neighbourhood of x, using the flow-box
theorem we can find a local orthonormal basis of 1-forms (θ1, · · · , θN ) such
that df = αθ1, where α is a smooth function. Define m by 2m+1 = N , then
df(x)γ(x) = (−i)mα(x)θ1(x)θ1(x) · · · θN (x) = (−i)mα(x)(θ1, θ1)(x)θ2(x) · · · θN (x).
This sum containsN−1 terms, and therefore belongs to Sx as soon asN > 1.

Since S is a closed complemented space ofCl+(M), there is a continuous
projection from Cl+(M) to S , as discussed in [5], p.16.
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Remark 2.6. In fact, we can use the above proof for both cases, if we
assume that ΓE is the chiral element γ, but the even case is so much simpler
that we preferred including both proofs.

As a corollary, we get:

Corollary 2.7. For any perturbation D of the Dirac operator DE⊗ IdMn(C)
on M of dimension at least two, if we take a point x0 ∈ M and set A0 =
{a ∈ A : a(π) = 0} then Comm(D) ∩ A0 = {0} and for any a ∈ A0, the
following holds:

‖a‖ 6 C1
∥∥[D, a]

∥∥,
where the norm is that of B(H ).

Proof. Using the remark after lemma 2.4, if a ∈ Comm(D), then a ∈ 1 ⊗
Mn(C). It is consequently clear that A0 ∩ Comm(D) = {0}.

The estimate on the commutator with C1 = C0C2 follows immediately
from the lemmas 2.1 and 2.4.

We can now state our theorem:

Theorem 2.8. For a scalar perturbation type spectral triple (C∞(M) ⊗
Mn(C),H , D), we can find C > 0 and A1 such that A1 ⊕ Comm(D) = A
and:

∀a ∈ A1, ‖a‖ 6 C‖[D, a]‖. (4)

Proof. From lemma 2.3 or corollary 2.7 (depending on the dimension), we
see that:

∀a ∈ A0, ‖a‖ 6 C1‖[D, a]‖. (5)

The set A0 has finite codimension and A0 ∩Comm(D) = {0}, hence we can
find a finite dimensional space V such that A0 ⊕ V ⊕ Comm(D) = A . We
set A1 = A0 ⊕ V .

It is obvious that ‖[D, a]‖ = ‖a‖1 is a norm on A1, and we can take
A1 = A1

1, the completion of A1 for the norm ‖ ‖1.

We want to prove that A1 = A0
1 ⊕ V . On the one hand, A0 ⊆ A1 and

A1 is closed for ‖ ‖1, so A0
1 ⊆ A1; on the other hand, V ⊆ A1 and V is

obviously closed.
We just have to check that A0

1 ∩ V = {0}. Set Ψ(a) = a(x0). This
matrix-valued linear form is clearly C∗-norm continuous on A0. Consider-
ing the equation (5), we see that Ψ is also ‖ ‖1-continuous. But Ψ = 0 on
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A0 and so A0
1 ⊆ ker Ψ. As V ∩ ker Ψ = {0}, we see that A0

1 ⊕ V = A1.

We have two closed complemented spaces in a Banach space, and the
projection P on V is well defined and continuous, i.e. ‖P (a)‖1 6 C4‖a‖1.
In fact, by taking an isometric embedding of A1/A0

1 in A1, we can choose
V0 such that the projection on V0 along A0

1 has norm 1.
V0 being finite dimensional, we can find a constant C3 such that: ‖P (a)‖ 6

C3‖P (a)‖1. Putting it all together:

‖a‖ 6 ‖a− P (a)‖+ ‖P (a)‖ 6C1‖a‖1 + C1‖P (a)‖1 + C3‖P (a)‖1
6(2C1 + C3)‖a‖1.

The equation (4) associated with the property that for any a ∈ A1,
‖a1‖∼ 6 ‖a1‖ shows that the hypotheses of lemma 1.4 are fulfilled. Hence,

Corollary 2.9. For a scalar perturbation type spectral triple over C∞(M)⊗
Mn(C), the restriction classes coincide with the bounded components.

3 Bounded Components of Scalar Perturbations

3.1 Description of the Bounded Components

If we only consider pure states, we can give a more precise description of the
“pure states bounded components”.

First, notice that Comm(D) is a sub-*-algebra of Mn(C), i.e. it is a
finite dimensional C∗ algebra, so we can write:

Comm(D) =
⊕
i

Bi

where Bi = Mni(C). Each Bi is represented in Mn(C) with multiplicity mi

and 1A ∈ Comm(D), thus
∑
i nimi = n.

We can now characterise the bounded components of pure states:

Proposition 3.1. Let σ be a pure state of A. We can find a system of
αi ∈ [0, 1] and σi, pure states of Bi such that

∑
i αi = 1 and σ|Bi = αiσi.

Conversely, given αi ∈ [0, 1] with
∑
i αi = 1 and (σi)i, pure states of Bi,

we can always find a pure state of A such that σ|Bi = αiσi.
Moreover, if m is the number of nonzero αi, the set of the pure states σ

which extend (αi, σi) is homeomorphic – in the sense of the weak ∗ topology
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– to M × Tm−1∏
i P (Cmi) where P (Cni) = Cni/C∗ is the projective space

over Cni.

Proof. Bear in mind that defining a pure state of Mn(C) is nothing but
taking a rank 1 projection of Cn. Given a rank 1 projector pi of Bi, we
know its image in Mn(C) has rank mi and we have to choose a rank 1
subprojection of this image.

This proposition follows from elementary consideration about rank one
matrices.

Remark 3.2. Notice that in our case, what we call “bounded components”
are in fact connected components of the state of pure states, in the sense of
the topology induced by the distance d.

Definition 3.3. If [σ] is a bounded component, we call amplitude of [σ] the
number m of nonzero αi.

There is a partition of the bounded components according to their am-
plitude. Notice that a bounded component of amplitude m = 1 is homeo-
morphic to M .

In the other cases, here is a description of the geometry of a piece of the
partition:

Proposition 3.4. Take m 6= 1. Let S be the set of the bounded components
of amplitudem such that them first αi are nonzero. There is a bijection from
S onto Σm ×

∏m
i=1 P (Cni) where Σm is the interior of the m dimensional

simplex.

Proof. Indeed, the choice of a bounded component of S is just the choice of
m nonzero αi and of m directions, each direction belonging to a Cni . Notice
that none of the m first αi can be equal to 1, otherwise the others should
be 0.

3.2 Topology of the Bounded Components

In the following, we only consider manifolds of dimension strictly more than
1.

Proposition 3.5. For a scalar type perturbation spectral triple, the metric
and weak-∗ topologies agree on restriction classes.

Proof. We want to apply proposition 1.8. First notice that equation (4)
implies that the image of L1 is included in the image of E = {a ∈ A1 : ‖a‖ 6
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C and ‖[D, a]‖ 6 1}. Hence, E is a set of derivable functions on a compact
space which are uniformly bounded.

Moreover, Lemma 2.4 proves that the functions in E have uniformly
bounded derivatives. Hence, the family E is equicontinuous and we can
apply Ascoli’s theorem to prove that E is totally bounded. Consequently
the image of E is totally bounded, and the hypotheses of proposition 1.8 are
satisfied.

3.3 Possible Decompositions of Comm(D)
Let us take a constant H, which can therefore be decomposed by blocks
into:

H =

λ1In1
. . .

λnInk

 ,
where the λi are couplewise distinct. Using the remark after lemma 2.4,
Comm(D) ⊆ 1⊗Mn(C). If a is in Comm(D), it must satisfy [H, a] = 0, i.e.
a must be written:

a =

M1
. . .

Mk

 ,
where the Mi belong to Mni(C). It is easy to check that any such element
is in Comm(D). Thus, we see that any decomposition

Comm(D) =
⊕
i

Bi

where Bi = Mni(C) and
∑
i ni = n, can actually appear.
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